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APPROXIMATE SCALING LAWS OF HOMOGENEOUS CONDENSATION 

IN EXPANDING SUPERSONIC GAS FLOWS 

S. A. Palopezhentsev UDC 533.011.8:536.423.4 

Due to the extreme complexity of the process of nucleation and growth of condensed- 
phase particles, the problem of gas flow with condensation cannot be solved analytically 
even with simple unidimensional flow models. The author of [i] used the example of flows 
of a condensing gas in supersonic nozzles and analyzed the corresponding dimensionless equa- 
tions to show that exact modeling is also impossible. At the same time, the existence of 
differentempirically established correlations connected with condensation in supersonic 
flows suggests that it is possible to find approximate similarity. There has been a whole 
range of studies devoted to establishing approximate scaling laws for condensation in expand- 
ing supersonic gas flows. The difference in the approach to the solution of the given prob- 
lem and in the formulations and the generality of the resulting laws make it incumbent to 
conduct a comparative analysis of these investigations. 

The study [2] was the first investigation to sufficiently thoroughly establish the scal- 
ing conditions, using as an example the approximate solution of the problem of condensation 
in a cloud of a vaporized substance during spherical dispersion into a cavity. Condensation 
kinetics was described by using the classical Frenkel-Zeldovich formula for the rate of for- 
mation of critical nuclei as a function of the degree of supercooling ~: I = cexp(-b/~2). 
Here, ~ = (Tp - T)/Tp (Tp is the temperature of vapor saturated at the given density). The 
extremely heavy dependence of the rate of nuclei formation on the degree of supercooling 
leads to a situation whereby most of the condensation centers ~ are formed on a very small 
section of the expansion stage corresponding to maximum supercooling ~m: 

m~ 

= S Idt '  ,~ I (~,n) At~ 
f$ 
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Fig. i 

(t s is the time corresponding to the moment of attainment of the state of saturation). Due 
to the abrupt change in nucleation rate, the rate of the change in the fraction of conden- 
sate dq/dt also exhibits a heavy dependence in the region of maximum supercooling. Figure 
i schematically depicts the dependence of the gas temperature and condensation rate on the 
expansion coordinate (the time t or distance r) (see, e.g., [3]). Here, the point s is the 
moment of attainment of the saturated state. The minimum of the gas-temperature distribu- 
tion, the supercooling maximum, and the maximum of the rate of nonequilibrium condensation 
(curve i) lie within a small region around point m. The figure also shows the curve for 
the rate of equilibrium condensation (curve 2). It is equal to zero at the moment of satura- 
tion, undergoes a discontinuity at the point s - where it is maximal from the right - and 
then decreases with further expansion of the gas. The narrowness of the distribution func- 
tion of dq/dt near point m makes it possible to determine the position of the latter from 
an equation of the form 

(dq/dt)~ = Q(~), (1)  

in which some arbitrariness is permitted in the choice of the function Q. The quantity 
is a certain point from the neighborhood of m. As the function Q, we can choose the equilib- 
rium condensation rate [4] or even its higher value at the moment of saturation. The function 
y = (u/L)(du/dt) was chosen as such in [2]. As follows from the energy equation 

c p d T - - L d q + u d u =  0 (2) 

(c D is the isobaric heat capacity; L, heat of phase transformation; u, velocity of the gas 
flow), this function corresponds to the condensation rate at the point where dT/dt = O, i.e., 
near ~m- However, the arbitrariness lies in the fact that we used the value of y at the 
saturation point to solve Eq. (i). Approximate solution of (i) leads to a transcendental 
equation fordm [2]: i/l(4m) = F(~m, Ts, ts, Ps) (Ps is the pressure at the moment of 
saturation). Thanks to the exponential character of I(~), the amount of maximum supercool- 
ing remains very stable. Knowledge of Sm makes it possible to determine the total number of 
condensation centers (from calculations performed for one molecule): ~ = ~(~m, Ts)(tsPs )-3. 
A change in the initial conditions is accompanied by a slight change in T s due to the ex- 
ponential character of the elasticity curve of the vapor. Thus, the condition for mainten- 
ance of the number of condensation centers is tsP s = const. It was shown in [2] that this 
is equivalent to the requirement of conservation of the number of collisions that a vapor 
molecule undergoes from the moment of saturation to infinity. 

The above-formulated scaling condition can be made more restrictive by taking into con- 
sideration that the gas expands nearly isentropically up to the moment of saturation, i.e., 
the condition can be modified by requiring an isentropic change in the initial conditions. 
Then the scaling condition reduces to the requirement of retention of the scaling time t s = 
const. 

The requirement of retaining the time scale with an isentropic change in the initial 
conditions can be satisfied if we do not directly integrate the equations of the condensa- 
tion kinetics (and gasdynamics). To make this possible, it is sufficient to compare the 
growth of clusters at identical temperatures in an elementary temperature range (T, T - dT), 
assuming that the condensation mechanism is determined mainly by first- and second-order 
reactions (spontaneous vaporization, binary collision of clusters with monomers) and that 
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the flow is isentropic before condensation begins [5]. Examination of the kinetic condi- 
tions which govern cluster growth makes it possible to obtain modeling conditions for a con- 
stant nozzle geometry, as well as a constant stangation temperature. For axisymmetric flows, 
the dependences of the time interval dt and the number of collisions dz on the initial condi- 
tions are determined by the following expressions: 

d t  ..~ - -  dTd~qT~2-v)/(2~-2); ( 3 ) 

dz:~ - -  d T d  ~ T (2-3v)/(~v-2) ~q~o o �9 ( 4 )  

Here, y is the ratio of the heat capacities; P0 and T O are the stagntion temperature and 
pressure; deq is the "equivalent" nozzle diameter, introduced in [5]. With an increase in 
To and a constant nozzle geometry, stagnation pressure must increase in accordancewith the 
following law in order to retain dz: 

p 0  N r~-~)/c~v-~). (5) 
However, in this case, there will be no compensation for spontaneous vaporization. The con- 
tribution of the latter increases as a result of an increase in the time interval. If we 
assume that, on the average, the increase in dz leads to growth of the cluster, then spon- 
taneous vaporization may be compensated for more rapidly than in (5) by an increase in p0: 
p0 ~ T0 r [r > (37 - 2)/(2y 7 2)]. If P0 increases in accordance with the more rapid isen- 
tropic law, i.e., Po ~ To 2X/L2X-2) , then the only consequence of an increase in T O will be 
an increase in dt - such slowing of the flow leads to growth of the cluster. This means 
that, with a constant nozzle geometry, the scaling law has the form 

P o T [  ~ = c(d~q), (6)  

where 2 y / ( 2 ~  - 2) > r > (3T - 2 ) / ( 2 y  - 2 ) .  

With a c o n s t a n t  t e m p e r a t u r e  in  t h e  p r e c o m b u s t i o n  chamber ,  deq s h o u l d  d e c r e a s e  in  o r d e r  
t o  m a i n t a i n  dz when P0 i n c r e a s e s .  Any r e d u c t i o n  in  deq l e a d s  t o  a d e c r e a s e  in  d t  and,  a c -  
c o r d i n g l y ,  t o  a d e c r e a s e  in  t h e  c o n t r i b u t i o n  o f  s p o n t a n e o u s  v a p o r i z a t i o n .  Here ,  a change  
in  deq a t  a r a t e  s l o w e r  t h a n  deq ~ l / p 0  a l s o  l e a d s  t o  an i n c r e a s e  in  dz .  Thus ,  w i t h  an i n -  
c r e a s e  in  P0, i t  i s  n e c e s s a r y  t o  have  deq d e c r e a s e  more r a p i d l y  t h a n  p0 -~ ,  s p e c i f i c a l l y ,  
deq ~ p 0 - $ ,  where ~ > 1. Summing up,  t h e  s c a l i n g  law f o r  a c o n s t a n t  t e m p e r a t u r e  To i s  r e p -  
r e s e n t e d  in  t h e  form 

pod~q = c (To) (0 < q < t). ( 7 ) 

As i n d i c a t e d  above ,  t h e  o n l y  c o n s e q u e n c e  o f  an i s e n t r o p i c  change  in  t h e  i n i t i a l  c o n d i -  
t i o n s  with deq = const is a change in the time interval. The dependence of the latter on 
just two parameters (deq and T o ) makes it possible to keep the interval dt constant through 
a corresponding change fn deq. Thus, it is possible to formulate conditions for "exact" 
0 m deling with a simultaneous change in all three parameters [6]: 

Po = ClT~ ~/(2~-2), d ~  = c2T~ -~)/ (~-~) .  (8) 

The same r e s u l t  was o b t a i n e d  in  [7] u s i n g  t h e  example  o f  t h e  a p p r o x i m a t e  s o l u t i o n  o f  a p r o b -  
lem which e n t a i l e d  f i n d i n g  t h e  maximum s u p e r c o o l i n g  in  a h y p e r s o n i c  f low in  n o z z l e s  w i t h  
r e c t i l i n e a r  g e n e r a t r i c e s .  The s c a l i n g  c o n d i t i o n s  f o r m u l a t e d  in  t h i s  s t u d y  f o r  a c o n i c a l  
n o z z l e  have  t h e  form 

S O = const, ~----- (r , / tg a) T~ 2-v)/(2v-2) = cons t ,  (9 )  

where  So i s  t h e  e n t r o p y  o f  t h e  f l o w ;  r ,  i s  t h e  c h a r a c t e r i s t i c  d i m e n s i o n  o f  t h e  c r i t i c a l  c r o s s  
s e c t i o n ;  a i s  t h e  a n g l e  be tween  t h e  g e n e r a t r i x  and t h e  n o z z l e  a x i s .  For  a c o n i c a l  n o z z l e ,  
t h e  v a l u e  o f  t h e  t ime  i n t e r v a l  d t  c o r r e s p o n d i n g  t o  t h e  e x p a n s i o n  s e c t i o n ( T ,  T - d r )  i s  con -  
n e c t e d  in  a h y p e r s o n i c  a p p r o x i m a t i o n  w i t h  t h e  f u n c t i o n  ~ by t h e  r e l a t i o n  d t  = dT~f(T)/2J-2C-p. 
I n  t h i s  r e l a t i o n ,  f ( T )  i s  a c e r t a i n  f u n c t i o n  o f  t e m p e r a t u r e .  Thus,  t h e  c o n d i t i o n  r = c o n s t  
i s  e q u i v a l e n t  t o  d t  = c o n s t  f o r  t h e  p r e s c r i b e d  t i m e  i n t e r v a l  (T, T - d t ) ,  which  means t h a t  
laws (8) and (9) are identical. 

Scaling laws (6)-(8) were obtained from examining the kinetic conditions of cluster 
growth on an elementary temperature interval, without analyzing the expansion process as 
a whole. This approach does not require knowledge of the temperature dependence of the reac- 
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tion cross sections, but it also does not consider changes in the total number of effective 
collisions due to a change in the temperature T s at which saturation is achieved. Neverthe- 
less, allowance for this factor makes it possible to obtain scaling laws in the same form 
on the basis of the condition of retention of the number of binary collisions beyond the 
phase transition curve. Also, it is necessary to restrict the analysis to binary collisions 
in order to obtain these laws. This approach was used in [8] to obtain condition (7). It 
is not hard to show that other scaling laws (6)-(8) can be found in a similar manner. For 
example, let us take condition (6). With a constant nozzle geometry and a fixed temperature 
in the precombustion chamber, the number of binary collisions z after the saturation point, 
due to the dependence of its position on P0, p ~ ( x > t ) : z ~ a e q p o l o  . From here, the 
condition z = const gives (with deq = const), poT~ 2-3~)/~(v-I) ~ const or p0T~r = const. Meanwhile 
r > (3~ - 2)/(2T - 2). To obtain the upper bound for r and Eq. (8), the initial conditions 
should be subjected to an isentropic change. Since this does not change the limits of in- 
tegration to calculate the number of collisions (the position of the saturation point re- 
mains the same), the condition z = const will be equivalent to dz = const - the problem is 
again reduced to analysis of an elementary expansion section. 

The scaling laws examined above are not so much a fruit of theory as they are a fact 
of empirical observation. Numerous experiments using molecular-beam technology have shown 
that laws (61)-(8) generalize the conditions of formation of clusters of a prescribed mean 
size in the long-range field of a jet [5, 9], as well as the conditions under which monomer 
velocity begins to increase, the dimer signal becomes maximal [i0], and the intensity of 
the molecular beam becomes minimal [8]. Similar laws have been established for the spatial 
position of the beginning of condensation - determined from measurements of Rayleigh scat- 
tering - and for the behavior of scattering intensity in the condensation zone [ii]. Our 
experiments ]have confirmed the presence of boundaries for the exponents r and q. The range 
established for q is much narrower than the range 0 ~ q ~ i. Within the experimental error, 
these quantities turned out to be constant for the given species of gas and change within 
the range 2.375 > r > 2.25 for monatomic gases (depending on the gas) and within the range 
3.125 > r > 2.75 for diatomic gases. Here, 0.5 < q < 1 [6]. 

The accuracy of the experiment proved to be adequate to detect a Variation of r in the 
case with CO 2 [5], due to the nonideality of this gas. The model of equilibrium spherical 
flow was used in [12] to modify law (6), which determines the conditions of condensation 
of CO 2 . 

The narrowness of the range for r and q and their near-constancy for monatomic and di- 
atomic gases makes it possible to combine relations (6) and (7) into the scaling law 

--r q 
poTo d~q = cz~, (i0) 

which in logarithmic coordinates is the equation of a plane; it allows and includes an isen- 
tropic change in the initial parameters P0 and T o . Here, compatibility conditions (i0) and 
(8) lead to the following relations: q(2 - Y)/(2y - 2) = 2u165 - 2) - r, c 2 = (CN/Cl)I/q. 

Thus, we have significantly reduced the number of experiments needed to establish spe- 
cific correlations when studying condensation. 

Until now, when examining scaling laws in condensing jets, most investigators have as- 
sumed that the change in the state of the gas during expansion up to the saturation point 
occurs isentropically. The studies [13-15] developed an analytical approach to which an 
arbitrary law of change in the state of the gas p = f(T) is adopted. Here, a separate an- 
alysis is made of condensation at the initial stage -when the effect on gasdynamics can 
be ignored- and at the stage of developed condensation. An example of the criterion which 
allows these stages to be distinguished from one another is the ratio of the heat of con- 
densation to the enthalpy of the mixture: 

Lq~/h~ = c~. (ii) 

If the temperature of the gas is taken as an independent variable, then the kinetic equation 
can be represented in the form 

dq/dT = ~(p, T, q)T-i ( 1 2 )  

where the dot denotes differentiation with respect to time. The rate of cooling T changes 
in the active condensation region much more slowly than the function ~. Thus, such a repre- 
sentation simplifies the analysis. 
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During the initial stage of the process, ~ = ~(T), and the kinetic and gasdynamic prob- 
lems are separated. Then for q at the point m we have 

T m 

Ts 

or, taking T = Ts on the integration section, 

qm = T 7 1 0  (Tin, T~). ( 1 3 )  

Since h ~ h(T) during the initial stage, it follows from (Ii) and (13) that T m = Tm(cm, Ts, 

Ts)" Similarly, it can be shown that the mean size of the clusters is also a function of 
these parameters. This means that with a specified law of expansion in the initial stage 
p = f(T) and a chosen criterion Cm, the governing parameters are the temperature at the sa- 

turation point T s and the cooling rate Ts. 

At the stage of developed condensation, it is necessary to simultaneously solve the 
gasdynamic and kinetic equations. Assuming that h =cpT - Lq and again choosing the temper- 
ature as an independent variable, we write the energy equation in the form 

d In p /d  in T = (cp - -  Ldq /dT) /RB (i - -  q). ( 1 4 )  

If in regard to the function T we can again a priori represent T = T(p, T, q), without time 
derivatives, then the simultaneous solution of (12) and (14) with the prescribed initial 
conditions p(T m) = Pm, q(Tm) = qm determines the condensation process - p(T), q(T),etc. 

Thus, the governing parameters are T s and Tsin this case as well. The set of initial states 
P0, To satisfying the condition T s = const consists of those states belonging to the single 
expansion curve p = f(T). From this, it is not hard to see that the scaling conditions T s = 

const, T s = const nearly coincide with the laws obtained earlier for an isentropic law of ex- 
pansion at the initial stage. It was shown above for such flows that an isentropic change 

in the initial states does not ensure T = idem. However, on the one hand, it can be seen 
from (3) that the dependence of the cooling rate on T o is relatively slight and, on the 

other hand, so is the effect of the rate itself T on the solution of a flow problem with 
condensation. Thus, the calculations performed in [4] for nitrogen showed that in the case 
of an appreciable difference in the results of determination of the beginning of condensa- 
tion, the rates of expansion should differ by a factor greater than 20. In [15], results 
presented from calculations performed for flows of water vapor confirm these conclusions. 

Let us discuss the scaling conditions for the homogeneous condensation of different 
gases. This question was examined in [16, 17]. The main conclusion reached in these stud- 
ies is essentially that for thermodynamically similar gases, the laws of the respective 
states can be extended to flows in jets with condensation. This means that for such gases 
the scaling conditions formulated above - being reducible to dimensionless form - are uni- 
versal in character. The validity of the scaling conditions for methyl acetylene C3H 4 and 
chloroform CHCI 3 was confirmed by calculation [17]. Here, the temperature and pressure at 
the critical point were taken as the reference state parameters of the gas. The fact that 
the inert gases belong to a single class of "similar" substances was demonstrated experi- 
mentally in [5, 18] for the mean cluster size and in [19] for the mass fraction of conden- 
sate. The authors of these studies converted variables to dimensionless form by using pa- 
rameters of the Lennard-Jones potential. 

Let us examine yet one more experimental study, also devoted to the condensation of 
inert gases and generalization of the results in dimensionless form [20]. The authors stu- 
died condensation in the flow of Ar, Kr, and Xe in a mixture with He in small and very long 
Laval nozzles. This is an instance of a fairly complicated flow requiring for analysis con- 
sideration of the effect of viscosity and differences in the molecular weights of the com- 
ponents of the mixture. Naturally, efforts to generalize results on condensation in such 
flows - and even more so for different gases - will enjoy more limited success. 

The generalization of the beginning of condensation performed by the authors of [20] 
with the use of parameters of the molecular interaction potential cannot be considered cor- 
rect, and they improperly concluded that the use of the corrected parameter P0 = P0(E/~ 
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TABLE 1 

Gas 'T o 

Ar 2,46 
Kr 1,72 
Xe t ,33 

IX,  

~g/kmole 

40 
83,8 

t31,3 

6,16 
8,79 

tl,6 

( , - ~ /m j )o ,5  

0,39 
0,32 
0,297 

0,29 
0,28 
0,24 

c0nst 
P~ Ifr~ (18) 

236,9 t 8,57 
196 8,86 
234 i t  ,69 

m 

<%0> 

236,9 
t54,2 
t47,5 

for generalization "does not work." Their principal mistake was that they_attempted to com- 
pare results obtained with significantly different corrected temperatures T o = T0/(E/k). 
Shown below is an example of the more proper use of the principle of corresponding states 
to analyze data on the beginning of condensation. 

In accordance with the principle of corresponding jets, the conditions of cluster growth 
are identical if the following corrected quantities are also identical: 

P o -  Po/(8/o3) = const, T o -  To/(e/k) = const, 

"deq =--- deq ~or = const, ? = const. 
(15) 

The study [20] presented measurements of the intensity of a molecular beam as a function 
of pressure P0 at constant values of temperature T o and the molar fraction x of the condens- 
ing gas in the mixture and_a constant nozzle geometry. It is clear that the points of the 
beginning of condensation P0j determined from this data for different gases cannot be com- 
pared directly, since the remaining corrected parameters are different. These results can 
be checked for satisfaction of the scaling laws. 

For a flow of a mixture of monatomic gases, the expressions for the time interval dt 
and the number of collisions dz in the spherical flow model have the form 

dt N _ dT/1 (r ) /2  (V) r,~~ ( 1 6 )  

dz ~ - -  (dT/T) r , / 2  (?) ~o (m/mj)  ~ (TdT)  W~cl-v), ( 17 ) 

w h e r e  mj i s  t h e  mass  o f  an  a t o m  o f  t h e  c o n d e n s i n g  j - t h  g a s ;  ~ = x jmj  + (1  - x j ) m g ;  x j  i s  t h e  
c o n c e n t r a t i o n  o f  t h e  j - t h  a t o g s ;  mg i s _ t h e  mass  o f  an  a tom o f  t h e  g a s - d i l u e n t .  I n t r o d u c i n g  " 
t h e  d i m e n s i o n l e s s  q u a n t i t i e s  n = no 3,  r ,  = r / o ,  we w r i t e  t h e  c o n d i t i o n  dz = c o n s t  i n  t h e  
form 

;,~0 (~/~)0,5~w~c~-~) = const. ( i s )  

For a flow of a one-component gas, the condition of constancy of the mean cluster size with 
a prescribed channel geometry corresponds to points in the plane log n0 - log T0 lying between 
lines of equal entropy and dz = const. Considering the relative closeness of these lines, 
for simplicity we will check the results of the experiment in [20] for satisfaction of dz = 
const. 

The initial data: To = 295 K, x = 0.06, d = const (r... = const). The points of the be- 
ginning of condensation: p0 Ar = 6"105 Pa, p0 Kr = 4.2-10 SPa, P0 Xe = 3.4.10 ~ Pa. The trend 
of the calculations is clear from Table i. Some of the parameters in the table were calcu- 
lated to wit]bin the constant multiplier. Thus, with allowance for T o = const, instead of 
nj0 we calculated the values p0jo 3 ~ nj0. These values were corrected for "one" nozzle 
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geometry. Here, we used the scaling law p0a00"8 = const and we considered the difference 
in m/m.j. The result of such a correction and allowance is the quantity <nj0>. Values of 
the latter are shown in Fig. 2 as a function of T0. Also shown there for comparison is the 
line dz = const at r~(m/m~) ~ = const. It is evident that Ar and Kr are generalized fairly 
well. The exception"of Xe in this regard can be explained on the one hand by the effect 
of m on Dt [see (16)] and, on the other hand, by the fact that this exception is tradition- 
ally observed (similar results Can be found in [18]) and the inclusion of this element in 
a single group of similar gases (Ar, Kr) is relative. 

Scaling laws for homogeneous condensation in expanding supersonic gas flows are approxi- 
mate in character and are of limited application. It can be stated that these laws exist 
due to a very low degree of correlation, and they are a manifestation of the "conservation 
laws" for the maximum supercooling ~m and the saturation temperature T s. 

However, the laws are in fairly good agreement with the latest empirical findings and 
will undoubtedly prove useful both for planning gasdynamic experiments on condensation and 
for correctly understanding the results of such studies. 
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